
Development and Integration of a
Hardware Oriented NoC Transfer
Protocol Specialized for Software
Parallelization
Bachelor thesis submitted by Manuel Bied
Supervising Tutor: Dipl.-Ing. Alex Schönberger
Begin: 04/06/2014 | Submission: 03/11/2014
Integrated Electronic Systems Lab Prof. Dr.-Ing. Klaus Hofmann

Declaration

Herewith I declare, that I have made the presented paper myself and solely with the aid of the means
permitted by the examination regulations of the Darmstadt University of Technology. The literature used
is indicated in the bibliography. I have indicated literally or correspondingly assumed contents as such.

Ich versichere hiermit, die vorliegende Arbeit selbständig und ohne fremde Hilfe angefertigt zu haben.
Die verwendete Literatur und sonstige Hilfsmittel sind vollständig angegeben.

Darmstadt, 03. November 2014 .
Manuel Bied

i

Contents

List of Figures iv

List of Listings vi

Used Abbreviations viii

1 Introduction 1

1.1 Motivation . 1

2 Fundamentals 2

2.1 Exceptions and Interrupts . 2
2.1.1 Exception Handler . 2

2.2 Build Process of a C Program . 2
2.3 Fundamentals of Parallelism in Hardware and Software . 3

2.3.1 Processor Architecture . 3
2.3.1.1 Pipelines . 4
2.3.1.2 Hardware Multithreading . 5
2.3.1.3 Coprocessors and Superscalar CPUs . 5
2.3.1.4 Multicore Processors & Multiprocessors . 5

2.3.2 Memory Architectures . 6
2.3.3 Processes and Threads . 6

2.4 Approaches to Parallelization . 7
2.4.1 Parallel Compilers . 7
2.4.2 Parallel Libraries . 7
2.4.3 PCAM Method . 7

2.5 Synchronization . 8
2.5.1 Communication Protocols . 9

2.5.1.1 Polling . 9
2.5.1.2 Stop-and-wait Protocol . 9

2.5.2 Mechanisms for Synchronization of competing Accesses 10
2.6 Performance Metrics . 12

3 Description of the Environment 15

3.1 Plasma CPU Core . 15
3.1.1 Control Unit . 16
3.1.2 Datapath . 17
3.1.3 Delay Slot . 17

3.2 Specifications of the Network-on-Chip . 17
3.2.1 tb_platform.vhd . 20

3.3 Communication . 20
3.3.1 Router . 20

ii

4 Implementation 22
4.1 Changes in the Build Process . 22

4.1.1 GCC Compiler Attributes . 22
4.1.2 Makefile . 23
4.1.3 Linker Script . 23
4.1.4 Script lst2files.pl . 23

4.2 Implementation of Coprocessor0 . 24
4.3 Implementation of an Interrupt Functionality . 27
4.4 Implementation of additionally required Instructions . 29

4.4.1 mfc0 . 29
4.4.2 mtc0 . 31
4.4.3 di/ei . 33
4.4.4 ehb . 35
4.4.5 ins . 36
4.4.6 eret . 38

4.5 Software protocol . 40
4.6 The Interrupt Service Routine . 42

5 Conclusion 45
5.1 Evaluation . 45
5.2 Outlook . 45

5.2.1 Scalability . 45
5.2.2 Delay of Interrupt . 45
5.2.3 Correct Implementation of mfc0 and mtc0 . 46
5.2.4 Acknowledgements . 46

5.2.4.1 Advanced Features for Interrupts . 46
5.2.5 Full Portation to MIPS32r2 . 46

6 Bibliography 47

iii

List of Figures

2.1 Build Process of a C program . 3

2.2 Instruction pipeline. 4

2.3 Schematic of a multi-core processor. 5

2.4 Schematic of a multiprocessor system. 6

2.5 PCAM-model . 8

2.6 Successful Stop-and-Wait Protocol . 9

2.7 Stop-and-Wait Protocol with the two possible timeout reasons 10

2.8 Basic functionality of a Mutex . 10

2.9 Basic functionality of Reader-writer locks . 11

2.10 Basic functionality of a Semaphore . 12

2.11 Basic functionality of a Barrier . 12

2.12 Speedup according to Amdahl’s law . 13

3.1 Block diagram of the PLASMA CPU core . 15

3.2 Memory. 19

3.3 Communication between the cores. 20

3.4 Registers of a router. 21

4.1 Description of the instruction mfc0. 30

4.2 Description of the instruction mtc0. 32

4.3 Description of the instruction ei. 34

4.4 Description of the instruction di. 34

4.5 Description of the instruction ehb. 35

iv

4.6 Description of the instruction ins. 36

4.7 Symbolic description of the instruction ins. 36

4.8 Description of the instruction eret. 39

v

List of Listings

3.1 Aliases for the decoding process . 16
3.2 General status information . 18
3.3 Memory addresses and length . 18
3.4 core0 . 18
3.5 core1 . 19
3.6 Router address . 19
3.7 Definition of a router . 21
3.8 Sending with a router . 21

4.1 compilerflags, CFLAGS of makefile . 23
4.2 compilerflags, CFLAGS_32r2 of makefile . 23
4.3 compilation of isr.c . 23
4.4 linking of the section .isr . 23
4.5 Modification of the lst2files script. 24
4.6 Modified input- and output port list of the reg bank. 25
4.7 Representation of the CP0 register bank. 25
4.8 Signals for write enable detection. 25
4.9 Write enable detection. 25
4.10 Initial state of the register banks when a reset occurs. 26
4.11 Modified write process:regular register bank. 26
4.12 Write process:CP0 register bank. 26
4.13 Write Process: IE-field of the status register. 26
4.14 Write Process: epc . 26
4.15 Read Process of the CP0 register bank. 27
4.16 Modified port list of the router . 27
4.17 Setting of the interrupt signal(router) . 27
4.18 New added port intr . 28
4.19 Assigning the interrupt signal to the intr port . 28
4.20 Interrupt process (Control Unit) . 28
4.21 Interrupt Service Routine Address . 28
4.22 Interrupt Service Routine Address . 29
4.23 Passing the pc value onto the EPC register . 29
4.24 Encoding of opcode COP0 . 30
4.25 Encoding of “MF” . 30
4.26 Modification of the result MUX(control signal) . 30
4.27 Modification of the result MUX(data path) . 31
4.28 Decoding of the instruction “mfc0” . 31
4.29 Default value of c0_rd_index . 31
4.30 Modification of source MUX(control signal) . 31
4.31 Modification of source a MUX(data path) . 32
4.32 Encoding of “MT” . 32
4.33 Decoding of the instruction “mtc0” . 33
4.34 Modification of the forward logic for rs . 33
4.35 Encoding of “MFMC0” . 34
4.36 Passing bit 5 of the instruction to the register bank . 35

vi

4.37 Decoding of the instruction “di” and “ei” . 35
4.38 Pseudoimplementation of ehb . 35
4.39 Encoding of opcode SPECIAL3 . 37
4.40 Encoding of the function INS . 37
4.41 Modification of the result MUX(control signal) . 37
4.42 Modified port list of the ALU . 37
4.43 Casting into the integer values msb and lsb . 38
4.44 Implementation of the (ins)-operation performed by the ALU 38
4.45 Decoding of the instruction “ins” . 38
4.46 Encoding of the function ERET . 38
4.47 Decoding of the instruction “eret” . 38
4.48 Returning to the epc address . 39
4.49 The function main_core2() . 40
4.50 The function f_noc_bmptoimage() . 40
4.51 The function f_noc_bmptoimage() . 40
4.52 Initialization of the structure v_noc_bmtoimage . 41
4.53 Core1 waiting for acknowledgement of core2 . 41
4.54 The function ISR() . 41
4.55 The function f_noc_t1_encode_cblks() . 42
4.56 The function f_noc_tcd_rateallocate() . 42
4.57 Moving the cause and the exception cause address to k0 and k1. 42
4.58 Storing the exception cause address to the memory . 42
4.59 Computation of the recent CP0 status. 43
4.60 Register saving and call of the received function. 43
4.61 Restoring of the non-preserving register. 44
4.62 Returning to the regular program flow. 44

vii

Used Abbreviations and Acronyms

ACK Acknowledgment

ALU Arithmetic Logic Unit

AMP Accelerated Massive Parallelism

CP0 Coprocessor 0

CPU Central Processing Unit

DSM Distributed Shared Memory

EPC Exception Program Counter

EX pipleine stage Execute

FPU Floating Point Unit

GPU Graphics Processing Unit

ID pipeline stage Instruction Fetch&Decode

IE Interrupt Enable

I/O Input/Output

ISA Instruction Set Architecture

ISR Interrupt Service Routine

MIPS Microprocessor without Interlocked Pipeline Stages

MEM Memory

MIPS I MIPS instruction set version I

MIPS32r2 MIPS instruction set version 32 revision 2

MUX Multiplexer

NoC Network on a Chip

OS Operating System.

PC Program Counter

PCAM Partitioning Communication Agglomeration Mapping

RAW Read After Write

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

WAR Write After Read

WAW Write After Write

WB Writeback

viii

1 Introduction

For a long time a common approach to achieve higher performance in computer technology was to
increase the clock frequency of the processing unit in a processor. For more than 20 years the frequency
has increased by 30% per year. This approach still improves processor performance but it gets more
difficult and less efficient due to the heat dissipation and high power consumption.
A new approach is to design processors which use more than one core. To exploit more than one core,
parallel programming is needed. The concept of parallel programming is not new, it has been explored
since the 1960’s, but was only spread in a scientific context, like simulation of scientific phenomena. For
desktop computers used at home, the common method wasto design sequential implemented algorithms.
Nowadays most computers in professional and home use include a multi-core processor. But the old
algorithms which were designed for single-core processors can not exploit the full capability of a multi-core
processor. There are two main approaches to design parallel algorithms, which differ significant in their
effort and outcome. Those approaches are auto parallelization and manual parallelization. To realize
parallelism there are different memory models which can be used, like the shared memory model and the
distributed memory model. Most parallel algorithms require the exchange of data or at least minimal
information between the cores due to data dependencies or simply to synchronize them. The regulation
of the communication between the cores is itself an interesting field. Therefore exist many protocols and
mechanisms to manage the communication and synchronization[13, 19].

1.1 Motivation

Using benchmarks to test and compare different multi-core systems is a common approach. But it implies
a major weakness: because the input parameters are fixed, the results apply only to one special case.
Previous to this work, Manuel Bied and Felix Pels worked on a “Projektseminar” at the TU Darmstadt
parallelizing parts of a JPEG2000-algorithm which was implemented in C. They worked with a Network-
on-Chip system with two cores.
The perspective was to automatize the parallelization for any given number of cores and any given
algorithm that could be parallelized manually. A common benchmark could only evaluate the performance
with fixed input data. With this approach a broad variety of pictures can be used to compare the
performance. If an automation works on any kind of algorithm that can be parallelized, the inputs are not
limited to pictures. Other inputs could be audio sequences or videos.
The result of the “Projektseminar” was a manually parallelized C code. The parallelization implemented
the synchronization between the two cores by software. The first core set a variable to true, when the
second core was supposed to start a parallelized loop. The second core was constantly reading the memory
to check whether the variable is set to true. This leads to increased memory bus traffic. This approach
will not work regarding scalability of the system. The memory bus will not be able to handle the traffic
created by multiple cores continuously reading the memory.
The goal of this work is to develop and integrate a hardware oriented protocol to avoid the permanent
reading of the memory. This requires the possibility of interrupts provided by hardware. The solution
should be as general as possible and independent from the running algorithm[13].

1

2 Fundamentals

2.1 Exceptions and Interrupts

The most challenging aspect of processor design is the control logic. To get the logic to function properly
on the one hand and to compute fast on the other hand, are both aspects not easy to implement. One
of the hardest part regarding control is the implementation of exceptions and interrupts, which change
the regular flow of the program. Exceptions are unexpected events, which occur within the state of
the processor, like a division by zero. They occur synchronously and are also called precise exceptions.
Interrupts, also called imprecise exceptions, are externaly caused hardware exceptions triggered by an
I/O-device such as a mouse.[8, 11]

2.1.1 Exception Handler

When an exception occurs, the processor saves the address and cause of the exception and jumps to
a certain code to handle the exception. This code is called exception handler. To be able to handle
interrupts, processors need to implement some register to store the exception address (EPC) and the
cause. The exception handler examines the cause and reacts accordingly to the cause. After handling the
exception the processor returns to the saved address. Exception handler that are designed for interrupt
handling are called interrupt handler or interrupt service routine (ISR)[8, 11].

2.2 Build Process of a C Program

The building process of a C program consists of four steps: Preprocessing, Compilation, Assembly and
Linking. It results in one executable file.

1. Preprocessing: The preprocessor allows the inclusion of header files, macros and conditional
compilation. It takes the source code as input and produces modified source code as output.

2. Compilation: The compiler uses the modified source code as input and generates an assembler
source code as output.

3. Assembly: The assembler source code is translated into object code, which is relocatable machine
code.

4. Linker: The linker combines one or more object files. It resolves external symbols and assigns final
addresses to functions and variables.

Technically speaking step 2 and 3 are different steps, although they are often referred to as one step called
“compilation”. The schematic process can is shown in figure 2.1. Instructions for the preprocessor are
directly inserted in the C code. Instructions for the compiler and assembler can be implemented in the
makefile. Instructions for the linker are implemented in the linker script[3, 8, 17].

2

Figure 2.1: Build process of a C program.[12]

2.3 Fundamentals of Parallelism in Hardware and Software

2.3.1 Processor Architecture

The are two kinds of processor architectures: Homogeneous and heterogeneous architectures. A
heterogeneous architecture uses processors of different kinds, whereas a homogeneous architecture
consists of multiple processors of the same kind.
Architectures also differ from each other regarding which assembler instructions can be executed. The
native commands which are implemented by a specific processor are defined by the instruction set
architecture (ISA). Two approaches to ISAs are reduced instruction set computer (RISC) and complex
instruction set computer (CISC). RISC architectures implement up to a few hundred instructions whereas
CISC architectures implement a few thousand. Special operations like “string move”, which need hundreds
of instructions on a RISC machine, need only one instruction on a CISC machine. This increases the
hardware effort and reduces the performance of simple instructions down. Even before the introduction
of multi-core processors there was a certain level of parallelism. Processors executed instructions or parts
of instructions in parallel.
Some mechanisms will be explained below[16, 19].

2.3 Fundamentals of Parallelism in Hardware and Software 3

2.3.1.1 Pipelines

Figure 2.2: Instruction pipeline. [19]

The maximal clock rate of a processor is determined by the longest path, also called critical path. In order
to achive higher clock rates the critical path needs to be shortened. Analogous to a production line, the
processor is divided into different stages. Different parts of one single instruction are executed in different
stages. Those are called stages of the pipeline. This shortens the critical path by a significant factor. The
factor depends on how many stages are used. The downside of this is that one instruction needs multiple
clock times to be finished. But there is still one instruction finished each clock cycle. Figure 2.2 illustrates
a simple pipeline with four stages:

• Fetch: The first stage fetches the next instruction from the memory.

• Decode: The second stage decodes the instruction and sets the control signals accordingly.

• Execute: The third stage executes the instruction.

• Write: The fourth stage writes the the result of the instruction to a register or to the memory.

There are some possibilities to enhance the effectivity of a pipeline:

• “out-of-order-execution”: The processor reorders the instructions to achive a better workload of
the instructions.

• “superpipelining”: in commercial processors there are 10-20 pipeline stages used, but there also
exist processors with up to 28 pipeline stages (Pentium 5 with Hyperthreading).

The following data dependencies can occur in a pipeline, but their concepts are not constricted to
pipelines:

• Read-After-Write dependence (RAW): An instruction reads data that has been written by a previous
instruction.

2.3 Fundamentals of Parallelism in Hardware and Software 4

• Write-After-Read dependence (WAR): An instruction overwrites data that has been read by a
previous instruction.

• Write-After-Write dependence (WAW): Two instructions write the same memory cell, therefore the
order of the writing process effects the result.

The importance of handling those dependencies increases when approaching parallelism.[11, 19]

2.3.1.2 Hardware Multithreading

From the viewpoint of a user of a single core processor, hardware multithreading appears like a processor
with multiple cores. While waiting for main memory access, processors that support hardware multi-
threading execute instructions from another thread. Hardware multithreading increases the performance
of a processor, but is not efficient as a processor with real additional cores. [19]

2.3.1.3 Coprocessors and Superscalar CPUs

Coprocessors are computing units which are implemented in addition to the regular processor core. They
are optimized to perform certain tasks. Examples are:

• Graphical Processing Units (GPU) are optimized for graphical computing.

• Floating Point Units (FPUs) are optimized to perform floating point operations.

Superscalar CPUs are CPUs which contain the datapath hardware multiple times. This way they can
fetch and execute more than one instruction per clock cycle. [16, 19]

2.3.1.4 Multicore Processors & Multiprocessors

Core 1 Core 2 Core 3 Core 4
L1 Cache L1 Cache L1 CacheL1 CacheL2 Cache L2 Cache L2 CacheL2 CacheShared L3 Cache

Multicore processor

Memory
Figure 2.3: Schematic of a multi-core processor.[19]

Multi-core processors are processors that contain two or more cores on a single chip. The cores may
share cache and main memory but they do not need to.

2.3 Fundamentals of Parallelism in Hardware and Software 5

Figure 2.3 shows a homogeneous architecture which shares the main memory and L3-cache.
Processor systems that consist of multiple (multi-core) processors are called multiprocessor systems.
Each processor has its own cache. The processors are connected via some kind of network, like a
Network-on-Chip (NoC) for example. This is illustrated in Figure 2.4[19].

Processor 1 Processor 2 Processor 3 Processor 4
Cache Cache CacheCacheSystem Bus

Memory I/O

Multiprocessor System

Figure 2.4: Schematic of a multiprocessor system.[13]

2.3.2 Memory Architectures

In the context of parallelism, there exist the following different memory models:

• Shared memory model: The processes of the multi(-core) processor systems share the same logical
address space.

• Distributed memory model: Each processor has a memory of its own. The processors communicate
through messages. This is called message passing.

• Distributed shared memory model: There are multiple physically separated memories. They are
logically combined through virtual address space.

Programming on a shared memory system is considered easier than on a distributed memory because the
effort of load balancing and data partitioning is reduced. [19]

2.3.3 Processes and Threads

The smallest unit of parallel activity are processes and threads.

• Processes: They are instances of computer programs and do not share the main memory of the
computer. They have access to defined parts of the memory only and cannot access memory parts
that are used by other processes.

• Threads: They are program parts inside a process. Threads share the resources used by the process
like operation system resources and memory. They can be used to efficiently use available processor
resources in multi-core systems. In single-core systems, threads can be used to divide a task in

2.3 Fundamentals of Parallelism in Hardware and Software 6

different subtasks or to maintain responsiveness of a user interfaces in the foreground and still
compute in the background.

The easiest way to exploit the possibilities of multi-core processors is to start a process on each core. This
requires the data of each processes to be independent from other processes. Data dependencies require
communication between the processes, in such cases threads are the better and faster choice. [19]

2.4 Approaches to Parallelization

Two main approaches in parallelization are auto parallelization and manual parallelization.

• Auto parallelization: This approach requires marginal manual effort, but the gain in performance
with this approach is also marginal. Two typical approaches are the use of parallel libraries and the
use of parallel compilers.

• Manual parallelization: Existing code is modified or new code is designed to support parallel
execution. The required effort is very high, but the resulting speedup compared to a sequential
algorithm is accordingly higher. The design of a parallel algorithm is a parallel process itself because
a lot of concerns have to be taken into account at the same time. The process contains multiple stages
and sometimes returning to a previous stage is inevitable. A typical design method is PCAM.[9]

2.4.1 Parallel Compilers

This approach requires little effort. An existing code is recompiled with a parallel compiler. The
dependencies in the program are required to be known, therefore this approach is still narrowed down to
parallel loops. [19, 10]

2.4.2 Parallel Libraries

There are multiple libraries which supply parallelized algorithm for numeric analysis and image processing.
With the use of parallel libraries, it is possible to reduce the development effort of a program that supports
parallelism. An example for a library that exploits data-parallel hardware like GPUs is the C++ library
AMP developed by Microsoft.[1, 19]

2.4.3 PCAM Method

PCAM is an acronym for Partitioning, Communication, Agglomeration and Mapping.

1. Partitioning: The problem is split into multiple small tasks. Practical matters1 are not taken into
account.

2. Communication: Dependencies are determined and communication topologies are defined.

1 Like the hardware on which the algorithm should be executed.

2.4 Approaches to Parallelization 7

Figure 2.5: PCAM-model [9]

3. Agglomeration: To decrease the communication effort the subtasks are combined to larger tasks.
In this stage practical matters are taken into account.

4. Mapping: The tasks are assigned to a processor, dependent tasks are assigned to one processor,
independent tasks are assigned to different processors. Sometimes it is not possible to comply with
both rules.

Figure 2.5 illustrates the four steps of the PCAM-process.[9]

2.5 Synchronization

Working with multiprocessor systems or multi-core processors requires synchronization. To regulate
the program flow communication is required. To prevent conflicts while accessing resources different
mechanisms are used depending on the program and resource properties.

2.5 Synchronization 8

2.5.1 Communication Protocols

To implement communication in general, there are basic protocol concepts. Two simple ones, which are
used in different context are explained subsequently.

2.5.1.1 Polling

Polling is the easiest way for an external source, like an I/O device, to communicate with the processor.
The processor periodically checks a status bit, whether the I/O device needs to be handled. If the I/O
device has new input data, it sets the bit. Since the processor has full control, how often the bit is checked,
the I/O data rates are predictable. The downside of this is the possibility of waste of resources, if the
processor checks the status bit multiple times only to find the bit not set. An alternative is to drive I/O
devices via interrupts. [8]

2.5.1.2 Stop-and-wait Protocol

The stop-and-wait protocol, also referred to as “positive acknowledgement with retransmission”, is a basic
concept to provide reliable transport for an unreliable transmission system.

Figure 2.6: Successful Stop-and-Wait Protocol[5]

There exists a sender and a receiver. The sender sends each packet with a unique sequence number. After
receiving, the receiver sends an acknowledgement (ACK). The sender does not send the next packet
until it receives an ACK with the corresponding sequence number. This behavior can be seen in figure 2.6.
There are two possible ways how this protocol would end in a deadlock: Either the packet or the ACK is
lost. To resolve this, the sender sets a timer. If it does not receive an ACK within a predefined time, it
resends the previous packet. This behavior can be seen in figure 2.7.[5, 7]

2.5 Synchronization 9

Figure 2.7: Stop-and-Wait Protocol with the two possible timeout reasons[5]

2.5.2 Mechanisms for Synchronization of competing Accesses

A challenging task in parallel programming is to synchronize concurrent accesses on resources in order to
prevent conflicts. Because multiple threads are executed concurrently and not sequential, this can lead to
unintended results. The reading and writing access on data has to be managed. Typical mechanisms are
explained as follows:

• Mutexes: Mutexes are the most simple mechanism to protect critical sections of a program. A
mutex has two states locked and unlocked. A thread can only access a critical section if the section
is unlocked. When a thread enters a critical section it locks the mutex. This mechanism fails for
recursive method calls. Figure 2.8 illustrates the behavior.

Figure 2.8: Basic functionality of a Mutex[19]

• Scoped Locking: Scoped locking is a simpler method than a mutex, but can only be used in
programming languages where local objects are automatically destroyed. A mutex is locked in the
constructor and unlocked in the destructor of an object. This has the advantage that the release of a
mutex cannot be forgotten.

2.5 Synchronization 10

• Monitors: Monitors are mutexes that cannot be directly accessed by the user. The locking and
unlocking is managed by the compiler. Therefore the programmer cannot forget to unlock a mutex.

• Reader-writer locks: There is no conflict in multiple threads to read the same data. But when the
data is read by one or more threads, no other thread may be allowed to write the data at the same
time. Vice-versa when a thread is writing the data, no other thread may be allowed to read it. The
function of reader-writer locks is illustrated in figure 2.9.

Figure 2.9: Basic functionality of a Reader-writer locks[13]

• Spinlocks: Spinlocks are used when the waiting time to enter a critical section is shorter than the
time to switch to another thread. A spinlock actively checks whether the lock is cleared.

• Call once: A call once method is exactly executed once to initialize a data structure.

• Atomic operations: An atomic operation is an operation which includes multiple instructions. It is
either executed completly or not at all. Therefore it is impossible that only a few instructions are
executed while the rest is not.

• Semaphores: Semaphores restrict the number of threads that can access certain data to a predefined
number n. The mechanism is like a mutex, but instead of locking the semaphore threads decrease a
counter when accessing the data. If the counter is zero a new thread cannot access it. If a thread
does not use the data anymore it increases the counter. Figure 2.10 illustrates the mechanism.

2.5 Synchronization 11

Figure 2.10: Basic functionality of a Semaphore[19]

• Condition variables: They contain information about which thread is waiting for which mutex.
When a thread unlocks a mutex, it can lookup which other thread is waiting for the mutex and wake
it.

• Barriers: Barriers are used to synchronize threads. A thread can only continue to execute the
program, when all other threads have reached the barrier. Figure 2.11 illustrates the mechanism of
a barrier[19].

Figure 2.11: Basic functionality of a Barrier[19]

2.6 Performance Metrics

There exist a variety of performance metrics to evaluate the quality of a parallelized algorithm. Some
definitions are given as follows:

p : number of used processors

2.6 Performance Metrics 12

n : size of the input

Tp(n) : parallel runtime - measured time between start and end of a parallel program

Cp(n) : cost1 - measurement for the tasks carried out by all processors, defined by:

Cp(n) = Tp(n) · p.

T ∗(n) : runtime of the quickest sequential algorithm

Sp(n) : speedup of the parallel implement compared to the sequential implementation, defined2 by:

Sp(n) =
T ∗(n)
Tp(n)

,

The speedup describes a relative speed gain which is achieved by the use of p processors. In most
cases, due to overhead effects like synchronization and communication linear speedup Sp(n) = p is not
achieved. Because the best sequential algorithm might not be known or the effort to implement it might
be too high, this definition comes with some shortcomings. Taking into account that a certain part of a

Figure 2.12: Maximum speedup according to Amdahl’s law [6].

program has to executed sequential and cannot be parallelized, there is a modified version of the equation.
Let f (0 ≤ f ≤ 1) be a constant fractional part of a parallel implementation that has to be executed
sequentially.

The modified Amdahl’s law then yields:

Sp(n) =
T ∗(n)

f · T ∗(n) + (1− f)
p · T ∗(n)

=
1

f + 1− f
p

.

1 It is also known as process time product.
2 This definition is known as Amdahl’s law.

2.6 Performance Metrics 13

The part that cannot be parallelized has a significant impact on the maximum speedup. If this part
amounts 1/10, the maximum speedup1 is 10. The speedup for different portions that can be parallelized
with increasing number of processors is illustrated in figure 2.12. It shows that the speedup converges to
a maximum available speedup. [11, 18]

1 The maximum speedup can be calculated with p going to infinity.

2.6 Performance Metrics 14

3 Description of the Environment

The platform consists of a simulated Network-on-Chip(NoC) with two cores. The cores communicate
through a router module. The specifications of the NoC are given in the data file noc.h. Modelsim is used
as simulator. The code that is executed, is an implementation of the JPEG2000-algorithm written in C by
openJPEG1. The two cores use a shared memory model. Two simultaneous read operations are allowed ,
whereas two simultaneous write operations at the same address are denied and result the simulation to
stop with an error.

3.1 Plasma CPU Core

A
LU

*

SHIFT

=

register
bank

rs_index

rt_index

rd_index

re
g_
b
an
k_
in

reg_bank_a

op_data_out

mem_data_out

reg_bank_in

sr
c_
a
_s
e
le
ct

reg_bank_b

op_data_out

mem_data_out

reg_bank_in

sr
c_
b
_s
e
le
ct

src_a_in

src_b_in

src_b_in reg_mem_data_in

reg_src_a_in

reg_src_a_in

reg_src_a_in

reg_src_b_in

reg_src_b_in

reg_src_b_in

a
lu
_f
u
nc

sh
ift
_f
u
nc

m
u
lt_
fu
n
c

co
m
p_
fu
n
c

comp_out

alu_out

shift_out

mult_out

alu_out

shift_out

mult_out

pc_out_inc

o
ut
_
se
le
ct

op_data_out

PC

p
c_
fu
nc

imm_in

prog_addr_out

pc_out_inc

pc_out_branch
pc_value

pc_out_inc

pc_out_branch

reg_mem_to_memory

memory
controller

reg_mem_result

data_in

w
b
_s
e
le
ct

mem_data_out reg_bank_in

reg_imm_in

reg_imm_in

reg_src_a_in

reg_src_a_in

reg_src_b_in

imm_in

sr
c_
b
_m

a
sk

imm_in

sr
c_
b
_m

a
sk

Figure 3.1: Block diagram of the PLASMA CPU core

The Plasma CPU core is implemented in vhdl. The central parts are the data path and the control unit.
The datapath performs data processing operations, the control unit determines how the data is processed.
It implements the four pipeline stages Instruction Fetch&Decode (ID), Execute(EX), Memory (MEM)

1 OpenJPEG is an open-source library. For further information see [2].

15

and Writeback (WB). It implements the MIPS IT M - instruction set. A detailed documentation can be
found in [14]. The connection of input and output signals of the control unit and the datapath are defined
in the file plasma.vhd. The block diagram of the core can be seen in figure 3.1.

3.1.1 Control Unit

The Control Unit sets the control signals depending on the decoded instruction and the states of the
pipeline. It determines the registers which are used as in- and output according to the opcode and the
rt-, rs and rd-field. It also detects if a pipeline stage has to be stalled or if values can be forwarded. For
example, if an instruction saves its result in register $s0 and the next instruction uses $s0 as input, the
pipeline needs to be stalled because the result of the first instruction is not available in the next clock
(RAW-problem). Thus, the second instruction needs the first instruction to pass the WB-stage, because
the register $s0 is written in the WB-stage. If for example, the first instruction is add, the result will
already be available after the EX-stage and can be forwarded. The Control Unit implements a stall- and
forward-logic and sets the control signals for the input- and output multiplexers accordingly.
To represent the pipeline stages, the control signals have a representation in each stage if needed. The
signal names have the following scheme:

• ID: i_control_signal

• EX: control_signal_ex

• MEM: control_signal_mem

• WB: control_signal_wb

Each clock cycle the signal is passed on to the corresponding signal in the next stage, provided that it is
still needed there. For the decoding process the aliases in listing 3.1 are used to represent the different
fields of the fetched instruction.

138 -- ---

139 -- ___ ____ ____ ____ ___ ____ ____

140 -- | \ |___ | | | | \ |___ |__/

141 -- |__/ |___ |___ |__| |__/ |___ | \

142 -- ---

143 -- ---------- 1. STAGE: FETCH AND DECODE ---------------

144 -- operation decode

145 alias i_opcode_dec : t_mips_opcode is instr_dec(31 downto 26);
146 alias i_format_dec : t_mips_format is instr_dec(20 downto 16);
147 alias i_func_dec : t_mips_function is instr_dec(5 downto 0);

148
149 -- register addresses

150 alias i_rs_dec : t_mips_reg_addr is instr_dec(25 downto 21);
151 alias i_rt_dec : t_mips_reg_addr is instr_dec(20 downto 16);
152 alias i_rd_dec : t_mips_reg_addr is instr_dec(15 downto 11);

Listing 3.1: Aliases for the decoding process

3.1 Plasma CPU Core 16

3.1.2 Datapath

The datapath performs the data processing operations depending on the signals it gets from the control
unit. The datapath contains the following units:

• The program counter (pc): It contains the next instruction that is to be fetched.

• The register bank: Storing and loading never occurs directly from the memory, values are always
loaded from and stored in the register bank first.

• The operation units: The operation units have source a and source b as input. Each source is
controlled by a multiplexer to choose which input data is passed onto the operation unit.

– Arithmetic logic unit: Provides several functions like ADD and OR.

– Shifter: Operates bit-shifting operations.

– Multiplier: Operates multiplications.

– Comparator: Checks for equality.

– Input- and output multiplexers: The input and output is chosen accordingly to the control
unit signals.

– The pipeline stage registers: They store the data of the pipeline stages.

– The memory controller: It regulates the communication with the memory.

Subsequent to the operation units the output multiplexer chooses from whose operation unit the
result is passed on.

3.1.3 Delay Slot

The implemented pipeline of the MIPSI-ISA contains a delay slot, which means that the next instruction
that follows a jump or branch instructions like j, jr, jal, bne and beq are executed independently, if the
condition of the previous instruction (if it has one) is true. If there is no instruction that can be performed
before the jump is executed, the compiler has to insert a nop-instruction in the delay slot.

3.2 Specifications of the Network-on-Chip

The specifications of the NoC are described in the data file noc.h . These are the informations for the
preprocessor. Below the source code is described step by step. The equivalent specifications for the
hardware are defined in the corresponding vhdl files. The memory model can be seen in figure 3.2.

Listing 3.2 contains general information about the NoC for the simulation platform. Line 2 defines the
number of cores to two. Line 4 and 5 define the data- and address width to 32 bits. Line 7 defines the
name of the main file to “openJPEG_core2’.

3.2 Specifications of the Network-on-Chip 17

1 /*** GENERAL STATUS INFORMATION FOR SIMULATION PLATFORM */

2 #define NOC_INFO_CORE_NUMBER 2 // number of cores in the noc

3
4 #define NOC_INFO_DATA_WIDTH 32 // data width

5 #define NOC_INFO_ADDR_WIDTH 32 // address width

6
7 #define NOC_INFO_MAIN "openJPEG_core2" // main name of files

Listing 3.2: General status information

Listing 3.3 contains the addresses and length of different parts of the memory. The program starts at
address 0x0 and has a maximum length of 65536. The input data starts at address 0x40000 and has a
maximum length of 197632. The output data starts at address 0xC1000 and has also a maximum length
of 132096. The stack has a maximum length of 131072 and starts at address 0x182000. This is not the
initial address, each core has its own initial stack pointer value. The heap starts at address 0x202000 and
has a maximum length of 16777216. The last address within the range of the heap is 0x1202000.

31 /******** ADDRESSES AND LENGTH *************************/

32 #define NOC_MEM_PROG_START 0x0

33 #define NOC_MEM_DATA_START (NOC_MEM_PROG_START + 0x40000) // 65536 - maximal length

of program

34 #define NOC_MEM_RESL_START (NOC_MEM_DATA_START + 0xC1000) // 197632 - maximal length

of input data

35 #define NOC_MEM_STACK_START (NOC_MEM_RESL_START + 0x81000) // 132096 - maximal length

of output data

36 #define NOC_MEM_HEAP_START (NOC_MEM_STACK_START + 0x80000) // 131072 - maximal length

of stack

37
38 #define NOC_MEM_HEAP_LENGTH 0x1000000 // 16777216 - maximal length

of heap

Listing 3.3: Memory addresses and length

Listing 3.4 defines the information about core0. It starts with the function main_core0. The initial value
of the first core’s stack pointer is 0x202000. Note that the stacks are growing from a higher to a lower
valued address.

53 /************** CORE 0 **********************/

54 #define NOC_CORE0_START "main_core0" // start function name

55
56 #define NOC_CORE0_STACK_INIT 0x202000 // initial stack pointer

value

Listing 3.4: core0

In analogy to the previous section, listing 3.5 defines the information about core1. It starts with the
function main_core1. The initial value of the second core’s stack pointer is 0x1c2000.

3.2 Specifications of the Network-on-Chip 18

53 /************** CORE 1 **********************/

54
55 #define NOC_CORE1_START "main_core1" // start function name

56
57 #define NOC_CORE1_STACK_INIT 0x1c2000 // initial stack pointer

value

Listing 3.5: core1

Figure 3.2: Model of the memory.1

Listing 3.6 sets the address of the router to 0x1202004. This address lies beyond the normal range of the
memory. Note that there is only one address defined. When a core tries to access an address the splitter
checks whether this address is located in the normal accessible range of the memory or is located within
the router addresses. If the core tries to access an address beyond the memory range, the splitter redirects
the core to the corresponding router.

41 #define NOC_MEM_ROUTER_START 0x1202004 // first address of NoC

router module

42 #define NOC_MEM_ROUTER_END 0x1202008 // limit address of NoC

router module

Listing 3.6: Router address

3.2 Specifications of the Network-on-Chip 19

3.2.1 tb_platform.vhd

The file tb_platform.vhd is used as a test bench. There are multiple flags which can be set to configure the
setting. The test bench is used to create instances of routers, cores, cache and memory dependent on the
set flags. The test bench defines how the components are connected.

3.3 Communication

The communication between the cores is realized by routers. Each core is connected to a splitter.
Dependent on the accessed addresses, the splitter connects to the router or to the memory model. The
router is connected to the other router via a data bus. The communication model is shown in figure 3.3.

core0

memory model

core1

splitter1splitter0 router0 router1

Figure 3.3: Communication between the cores.1

3.3.1 Router

The definition of the router is located in noc.h. It consists of two 32-bit registers. The first register
can be accessed by ctrl and CTRL in the C source code. The control register consists of five fields:
my_addr, send_addr, reserved, recv and send . The field my_addr contains the address of the router
itself, send_addr contains the address of the router to which data is to be send, reserved is not used, recv is
set to 1 when the router is receiving and send is set to 1 when the router is sending. The second register
contains the address of the received data2. The definition can be seen in listing 3.7, figure 3.4 illustrates
the registers of a router.

2 There is no sending of data itself, only addresses to data are being sent.

3.3 Communication 20

typedef struct{
unsigned int my_addr : 4;

unsigned int send_addr : 4;

unsigned int reserved : 22;

unsigned int recv : 1;

unsigned int send : 1;

} router_ctrl_reg_t;

typedef struct{
union{
unsigned int ctrl;

router_ctrl_reg_t CTRL;

} __attribute__((aligned (4)));

unsigned int data;

} router_t;

Listing 3.7: Definition of a router

Figure 3.4: Registers of a router.1

The function router_send(unsigned int addr, void * data) is used for data transmission. As long as the
router is processing a previous sending process, a new sending process waits for the previous one to finish.
When the router starts to send, the data-field is set to the data address argument, the field send_addr is set
to the addr argument and the send bit is set. The definition of the sending process can be seen in listing
3.8.

router_return_t router_send(unsigned int addr, void * data){

while(router->CTRL.send){

}

router->data = (unsigned int) data;

router->CTRL.send_addr = addr;

router->CTRL.send = 1;

return ROUTER_OK;
}

Listing 3.8: Sending with a router

3.3 Communication 21

4 Implementation

The hardware oriented protocol requires implementations and changes on different levels, i.e. implemen-
tation and changing in hardware, implementation in software, changing of the makefile and linker script.
The implementation cannot be understood step-by-step but rather has to work in its entirety. In order to
implement a protocol that relies on hardware provided interrupts instead of software managed polling
the following steps are required:

1. Since the gcc compiler provides support for interrupts1, some changes in the build process are
required.

2. An implementation of the MIPS coprocessor0 is required.

3. Additional instructions are required to be implemented.

4. The interrupt functionality itself has to be implemented in the hardware.

5. The software protocol needs to be adjusted.

4.1 Changes in the Build Process

4.1.1 GCC Compiler Attributes

The gcc compiler provides different attributes2 to support interrupts. These attributes have to be inserted
in the function header in the C source code. The attributes are documented in [4]. For the MIPS
architecture the interrupt attribute looks like this:

_ _ a t t r i b u t e ((i n t e r r u p t)) __

The interrupt attribute tells the compiler to create an assembler routine that automatically handles register
saving, fetching of the interrupt cause and returning to the interrupted code. This routine is wrapped
around the code that is created by the marked function. The last instruction of a function marked as
interrupt is always an eret. A more detailed description can be found in chapter 4.6. The interrupt
attribute requires a MIPS32r2 or higher implementation, which requires a manipulation of the makefile.
The gcc compiler also provides an attribute to place a function into a defined section in the memory.

_ _ a t t r i b u t e ((. sectionname)) __

The marked function will be located into the section .sectionname. In order to get a fixed address for
interrupt handling, which can be implemented in hardware, it is necessary to modify the linker script to
locate this section to a fixed address.

1 For MIPS this support is only provided for implementations of version MIPS32r2 or higher, this results in the steps 2&3.
2 depending on the architecture

22

4.1.2 Makefile

The original flag list CFLAGS used for compilation was declared like in listing 4.1 in the makefile. The
flag of interest is the -mips1 flag, which tells the compiler to compile for MIPSI architecture.

CFLAGS = −EB −O2 −Wall −Wfatal−e r r o r s −mips1 −c −s −s td=c99 −msoft− f l o a t −I$ (INCLUDE)

Listing 4.1: compilerflags, CFLAGS of makefile

There was another flag list CFLAGS_32R2 added, which uses the flag -mips32r2 instead of -mips1. This
can be seen in listing 4.2.

CFLAGS_32R2 = −EB −O2 −Wall −Wfatal−e r r o r s −mips32r2 −c −s −s td=c99 −msoft− f l o a t −I$ (
INCLUDE)

Listing 4.2: compilerflags, CFLAGS_32r2 of makefile

The function to handle an interrupt was implemented in C in the file isr.c, which will be explained later
on. The code seen in listing 4.3 was added to the makefile to make the compiler compile the file isr.c for
an MIPS32r2 architecture.

i s r . o : i s r . c
$(SIM_MESSAGE) $(MAIN) $<
$(MIPS_GCC) $(CFLAGS_32R2) $< −o $@

Listing 4.3: compilation of isr.c

The compiled code includes instructions which are not part of the MIPS-I instruction set. These instructions
were implemented additionally.

4.1.3 Linker Script

The linker script is the file slow_memory.lds. The code seen in figure 4.4 results in declaring the start of
the section .isr to the address 0x35000.

. i s r 0x35000 :
{

* (. i s r)
}

Listing 4.4: linking of the section .isr

The address was chosen because it is precedes the data, which starts at 0x40000, but is located after the
original jpeg2000 program code, which ends at 0x305c7.

4.1.4 Script lst2files.pl

There are several scripts running in the background of the compilation process to create and provide
data needed for the simulation by modelsim. One of these scripts is lst2files.pl which had to be modified
because of the added section. In order to recognize the new section, the expression ($1 eq "isr") was

4.1 Changes in the Build Process 23

added to line 280 of the script (see listing 4.5). This is necessary to provide the correct data for the
simulation.

280 if(($1 eq "text") || ($1 eq "rodata") || ($1 eq "data") || ($1 eq "sdata") || ($1
eq "sbss") || ($1 eq "isr") || ($1 eq "simple")){

281 $code_flag = 1;

282 }

Listing 4.5: Modification of the lst2files script.

4.2 Implementation of Coprocessor0

To handle interrupts, the MIPS-ISA requires the implementation of coprocessor0, which is one of four
coprocessors that extend the ISA functionality. Therefore the CP0 registers and the interactions with
them need to be implemented. The full definition of the CP0 register set can be found in [15]. For
interrupt handling, following registers are of interest:

• $12 - Status Register: The status register stores the states of the processor. The value at bit 0
represents the IE-field, containing the status if interrupts are enabled.

• $13 - Cause Register: The cause register contains the cause of an exception, interrupts are a special
case of exceptions (asynchronous exceptions).

• $14 - Exception Program Counter: The EPC contains the address where to return after an
exception has occurred and has been handled.

The implementation of the interaction is described in chapter 4.4. The implementation of the CP0
registers was done in the file plasma_reg_bank.vhd . To interact with the CP0 register set the following
input- and output ports were added: c0_rd_index, c0_source_out, c0_write, c0_read, status_ie_en,
interrupt_enable_sc, epc_out. epc_in and epc_we. The modified input- and output port list can be
seen in listing 4.6. Their use will be described subsequently. Note that the input port c0_read was added
for an earlier implementation, the recent version does not use it.

4.2 Implementation of Coprocessor0 24

43 entity plasma_reg_bank is
44 generic(
45 DEBUG_FLAG : string := "OF"

46);

47 port(
48 clk : in std_logic;

49 reset : in std_logic;

50 rs_index : in t_mips_reg_addr;

51 rt_index : in t_mips_reg_addr;

52 rd_index : in t_mips_reg_addr;

53 reg_dest_new : in t_plasma_word;

54 reg_source_out : out t_plasma_word;
55 reg_target_out : out t_plasma_word;
56 c0_rd_index : in t_mips_reg_addr;

57 c0_source_out : out t_plasma_word;
58 c0_write : in std_logic;

59 c0_read : in std_logic;

60 status_ie_en : in std_logic;
61 interrupt_enable_sc : in std_logic;
62 epc_out : out t_plasma_word;
63 epc_in : in t_plasma_word;

64 epc_we : in std_logic
65);

66 end entity plasma_reg_bank;

Listing 4.6: Modified input- and output port list of the reg bank.

To implement the register bank the signal c0_reg_bank of type t_reg_bank was added as shown in listing
4.7. t_reg_bank is defined in plasma_pack.vhd and represents a register bank consisting of 32 registers.

74 -- CP0 register bank

75 signal c0_reg_bank : t_reg_bank;

Listing 4.7: Representation of the CP0 register bank.

To modify the write signal detection, the signals, c0_write_en and epc_we_signal were added like in
listing 4.8. They are connected to the input ports c0_write and epc_we. The signal write_en is set if the
destination register is not register $0, which is never a legal destination because its value always contains
zero as value and cannot be changed. This can be seen in listing 4.9.

79 -- write signal detection

80 signal dest_zero : std_logic;

81 signal write_en : std_logic;

82 signal c0_write_en : std_logic;

83 signal epc_we_signal : std_logic;

Listing 4.8: Signals for write enable detection.

95 -- -------- WRITE ENABLE DETECTION -------------------------

96 dest_zero <= ’1’ when rd_index = b"0_0000" else ’0’; -- rs0 is always zero

97 write_en <= not dest_zero;
98 c0_write_en <= c0_write;

99 epc_we_signal <= epc_we;

Listing 4.9: Write enable detection.

4.2 Implementation of Coprocessor0 25

The write process, which is a synchronous process, is triggered by rising edges of the clock signal. Like
the regular register bank, the CP0 register bank is initialized with zeros when a reset occurs (see listing
4.10).

108 if reset = ’1’ then
109 for i in 2**PLASMA_REG_ADDR_WIDTH - 1 downto 0 loop
110 mem_reg_bank(i) <= PLASMA_ZERO_WORD;

111 c0_reg_bank(i) <= PLASMA_ZERO_WORD;

112 end loop;

Listing 4.10: Initial state of the register banks when a reset occurs.

Because write_en does not contain any information about which register bank should be accessed, the
original write process for regular registers was modified with the condition, that c0_write_en has to be
zero. The condition that write_en needs to be true remains unchanged. This is shown in listing 4.11.

115 if write_en = ’1’ and c0_write_en = ’0’ then
116 mem_reg_bank(to_integer(unsigned(rd_index))) <= reg_dest_new_sig;

117 end if;

Listing 4.11: Modified write process:regular register bank.

To write the CP0 register bank, both signals write_en and c0_write_en have to be true.

119 if write_en = ’1’ and c0_write_en = ’1’ then
120 c0_reg_bank(to_integer(unsigned(rd_index))) <= reg_dest_new_sig;

121 end if;

Listing 4.12: Write process:CP0 register bank.

The IE-field of the status register ($12) can be accessed directly, therefore the signal status_ie_en has to
be set to true. Then the value of the signal interrupt_enable_sc is stored into the IE-field. This can be
seen in listing 4.13

123 if status_ie_en = ’1’ then
124 c0_reg_bank(12)(0) <= interrupt_enable_sc;

125 end if;

Listing 4.13: Write Process: IE-field of the status register.

If the write signal of the EPC epc_we_signal is set to true, the EPC register($14) stores the value of the
incoming signal epc_in. This can be seen in listing 4.14.

123 if epc_we_signal = ’1’ then
124 c0_reg_bank(14) <= epc_in;

125 end if;

Listing 4.14: Write Process: epc

Like the reading process of the regular register bank, the reading process of the CP0 register bank is
implemented as asynchronous process. The value of the destination register is assigned to the output
port c0_source_out. To be able to use the EPC value anytime, it was assigned to the output port epc_out.
This can be seen in listing 4.15

4.2 Implementation of Coprocessor0 26

138 -- CP0 read access is asynchronous

139 c0_source_out <= c0_reg_bank(to_integer(unsigned(c0_rd_index)));

140 epc_out <= c0_reg_bank(14);

Listing 4.15: Read Process of the CP0 register bank.

4.3 Implementation of an Interrupt Functionality

To implement the interrupt functionality, the port list of the router was extended by the output port
recv_interrupt . The modified port list can be seen in listing 4.16.

entity router is
generic (
addr_intern : t_noc_addr := b"0000"

);

port(
-- GENERAL

clk : in std_logic;

reset : in std_logic;

-- PLASMA INTERFACE

address : in std_logic;

we : in std_logic;

rd : in std_logic;

data_w : in t_plasma_word;

data_r : out t_plasma_word;
-- INPUT BUS INTERFACE

addr_in : in t_noc_addr;

acc_in : in std_logic;

ack_in : out std_logic;
data_in : in t_plasma_word;

-- OUTPUT BUS INTERFACE

addr_out : out t_noc_addr;
acc_out : out std_logic;
ack_out : in std_logic;

data_out : out t_plasma_word;
recv_interrupt : out std_logic

);

end entity router;

Listing 4.16: Modified port list of the router

The output port recv_interrupt is set to true, when the signal recv_flag is set, which is the case as soon as
the router receives any data. This can be seen in listing 4.17.

recv_interrupt <= recv_flag;

Listing 4.17: Setting of the interrupt signal(router)

The output port recv_interrupt was passed on through the test bench tb_platform onto the new input port
of the control unit intr(listing 4.18).

4.3 Implementation of an Interrupt Functionality 27

intr : in std_logic;

Listing 4.18: New added port intr

The new signal interrupt is then assigned to the port intr (listing 4.19).

interrupt <= intr;

Listing 4.19: Assigning the interrupt signal to the intr port

There was a process implemented to set the signal epc_we_out to 1 when an interrupt occurs, and to 0
when the interrupt signal is false. epc_we_out is passed through the datapath onto the register bank port
epc_we which enables the writing of the incoming address to the EPC register. The process can be seen in
listing 4.20.

interrupt_process:

process(interrupt)

begin

if interrupt = ’1’ then
epc_we_out <= ’1’;

else
epc_we_out <= ’0’;

end if;

end process;

Listing 4.20: Interrupt process (Control Unit)

Correspondingly, there was the input port intr added to the datapath, which is assigned to the signal
interrupt . When the interrupt is triggered, the signal epc_out is set to the value of the signal pc_val
which contains the next address of the regular program flow. To jump to a fixed address, the address
0x35000 was encoded as ISR_ADDR in plasma_pack.vhd as shown in listing 4.21.

constant ISR_ADDR : std_logic_vector := x"0003_5000"; --

addresse for the interrupt service routine

Listing 4.21: Interrupt Service Routine Address

To jump to the interrupt service routine (ISR) address, the pc multiplexer of the datapath was modified
as shown in listing 4.22. The signal pc_val contains the regular value of the next instruction, for the
case that no interrupt occurred1. If the interrupt signal is set the ISR address is assigned to the signal
pc_value_with_delay_slot . Otherwise the signal pc_value_with_delay_slot is assigned the regular pc
value. If the instruction is not eret, the pc_value_with_delay_slot is passed on to the pc unit. The further
details are explained in the description of the instruction eret.

1 The condition that the signal pc_func contains the value PLASMA_PC_EPC does not occur, this option was added due to a
previous implementation of eret, the latest implementation does not require it.

4.3 Implementation of an Interrupt Functionality 28

-- PC VALUE MUX

--

with pc_func select
pc_val <= reg_imm_in when PLASMA_PC_IMM ,

reg_src_a_in when PLASMA_PC_REG ,
pc_out_branch when PLASMA_PC_BRANCH ,
epc_in when PLASMA_PC_EPC ,
pc_out_inc when others;

with interrupt select
pc_value_with_delay_slot <= ISR_ADDR when ’1’,

pc_val when others;

with no_delay_slot select
pc_value <= epc_in when ’1’,

pc_value_with_delay_slot when others;

Listing 4.22: Interrupt Service Routine Address

Thus, when an interrupt occurs the regular pc address (signal pc_val) must to be stored to the EPC. A
process, which is triggered by a rising interrupt signal edge, was implemented to assign the value of
pc_val to the signal epc_out . The signal epc_out is wired to the input port epc_in of the register bank. The
process can be seen in listing 4.23.

interrupt_process:

process(interrupt)
begin
if rising_edge(interrupt) then

epc_out <= pc_val;

end if;
end process;

Listing 4.23: Passing the pc value onto the EPC register

4.4 Implementation of additionally required Instructions

If the flag is set to compile for a MIPS32r2-ISA, the assembler code contains the following additional
instructions mfc0, mtc0, di, ei, ins, ehb and eret. Their descriptions are extracted from [14]. The
implementation is described in the following. The signals that are set in the ID stage are passed on after
each clock to the signal representation of the next stage.

4.4.1 mfc0

The instruction “mfc0” is used to move a value from a CP0 register to a register of the regular register
bank. Precisely the value of the regular register specified by the instruction field rt is copied to the CP0
register specified by the instruction field rd. The description of mfc0 can be seen in figure 4.1. Note that
the sel field is not supported and must be zero.

4.4 Implementation of additionally required Instructions 29

Figure 4.1: Description of the instruction mfc0.[14]

First the opcode COP0 encoded by “010000” had to be implemented, this was done in the file
mips_instruction_set.vhd as shown in listing 4.24, the instruction field “MF” was encoded as shown in
listing 4.25. The opcode COP0 is used for all coprocessor0 instructions, MF can also be used for move
from instructions of other coprocessors if they are implemented.

constant MIPS_OPCODE_COP0 : t_mips_opcode := b"01_0000"; --

coprocessor0 = interrupt

Listing 4.24: Encoding of opcode COP0

constant MIPS_FMT_MFC : t_mips_reg_addr := b"0_0000"; -- rt =

fs

Listing 4.25: Encoding of “MF”

To be able to use values coming from CP0 as output source, the option SRC_OUT_C0 was added to the
result multiplexer of the datapath. When the control signal of the result multiplexer “src_out_select”
holds the value SRC_OUT_C0, the output of the result multiplexer is set to the output of CP0 c0_out. The
implementation can be seen in line 183 of listing 4.26 and line 437 of listing 4.27.

174 -- RESULT MUX

175 --

176 type t_src_out_select is (
177 SRC_OUT_ALU ,

178 SRC_OUT_MULT ,

179 SRC_OUT_SHIFT ,

180 SRC_OUT_PC ,

181 SRC_OUT_MEM_DATA ,

182 SRC_OUT_C0);

Listing 4.26: Modification of the result MUX(control signal)

4.4 Implementation of additionally required Instructions 30

429 -- OUTPUT MUX

430 --

431 with src_out_select select
432 op_data_out <= pc_out_inc when SRC_OUT_PC ,
433 shift_out when SRC_OUT_SHIFT ,
434 mult_out when SRC_OUT_MULT ,
435 reg_mem_data_in when SRC_OUT_MEM_DATA ,
436 c0_out when SRC_OUT_C0 ,
437 alu_out when others;

Listing 4.27: Modification of the result MUX(data path)

When the “mfc0” is recognized in the decoding process, only the signal i_src_out_select has to be set to
SRC_OUT_C0. The signal c0_read_en is set to “1” and passed on to the register bank, but it is not used
anymore.

when MIPS_OPCODE_COP0 =>

case i_rs_dec is
when MIPS_FMT_MFC => i_src_out_select <= SRC_OUT_C0;

c0_read_en <= ’1’;

Listing 4.28: Decoding of the instruction “mfc0”

The default value of c0_rd_index was implemented to be i_rd_index (see listing 4.29 and the default value
of i_rd is i_rt_dec. Therefore the required format is matched and the value is moved correctly.

c0_rd_index <= i_rd_dec;

Listing 4.29: Default value of c0_rd_index

4.4.2 mtc0

The next instruction mtc0 is used to move the value of the regular register specified by the instruction
field rt to the CP0 register specified by the instruction field rd. The description of mfc0 can be seen in
figure 4.2 Note that the sel field is not supported and must be zero.

The opcode COP0 has already been implemented for the instruction mfc0, the instruction field “MT” was
encoded like in listing 4.32 in mips_instruction_set.vhd. MT can also be used for move to instructions
of other coprocessors if they are implemented. For the implementation of mtc0 the source a multiplexer
of the ALU was modified. The option SRC_ZERO_SEL was added like in listing 4.30. When the control
signal of the source a multiplexer holds SRC_ZERO_SEL the output is set to PLASMA_ZERO_WORD(seen
listing 4.31).

158 type t_src_select is (
159 SRC_REG,

160 SRC_OP_OUT ,

161 SRC_MEM_OUT ,

162 SRC_WB_OUT ,

163 SRC_ZERO_SEL);

Listing 4.30: Modification of source MUX(control signal)

4.4 Implementation of additionally required Instructions 31

Figure 4.2: Description of the instruction mtc0.[14]

266 -- SOURCE A MUX

267 --

268 with src_a_select select
269 src_a_in <= op_data_out when SRC_OP_OUT ,
270 mem_data_out when SRC_MEM_OUT ,
271 reg_bank_in when SRC_WB_OUT ,
272 PLASMA_ZERO_WORD when SRC_ZERO_SEL ,
273 reg_bank_a when others;

Listing 4.31: Modification of source a MUX(data path)

constant MIPS_FMT_MTC : t_mips_reg_addr := b"0_0100"; -- fs =

rt

Listing 4.32: Encoding of “MT”

The ALU input a is set to be 0, which was done by setting the control signal of the source a multiplexer
src_a_select to SRC_ZERO_SEL . The default value for the source a input is the value that comes from
the register defined by the rs-field. The rs-field is not defined for this instruction, the MT-field (00100) is
at its place instead. So it is always interpreted as register $4. Because the original forward logic does
not recognize this, it is possible that it forwards a value written to register $4. To avoid this, the signal
no_rs_forward is set to true, the forward logic was modified not to forward rs if the signal is set. This
can be seen in listing 4.34. The source b input is by default set to the register defined by the rt-field. The
ALU operates an unsigned add operation on the input values. The output value is the original value of
input coming from source b. The signal result is saved in the register defined by the rd-field in the CP0
register bank.

The ALU operates an unsigned add operation on the value coming from the regular register defined by rt
and adds zero from the source a input. The result, which is the original value, is stored in the register
defined by the rd-field. Since the b input is not an immediate value, the signal imm_command.src_b
was set to “0”.

4.4 Implementation of additionally required Instructions 32

when MIPS_OPCODE_COP0 =>

case i_rs_dec is
when MIPS_FMT_MTC => i_alu_func <= PLASMA_ALU_ADDU;

src_a_select <= SRC_ZERO_SEL;

imm_command.src_b <= ’0’;

i_rd <= i_rd_dec;

reg_addr.rt <= i_rt_dec;

i_c0_write_en <= ’1’;

no_rs_forward <= ’1’;

Listing 4.33: Decoding of the instruction “mtc0”

-- -------- A SOURCE FORWARDING -----------------

--

if forward_flags.ex.rs = ’1’ and no_rs_forward = ’0’ then src_a_select <=

SRC_OP_OUT;

elsif forward_flags.mem.rs = ’1’ and no_rs_forward = ’0’ then src_a_select <=

SRC_MEM_OUT;

elsif forward_flags.wb.rs = ’1’ and no_rs_forward = ’0’ then src_a_select <=

SRC_WB_OUT;

end if;

Listing 4.34: Modification of the forward logic for rs

4.4.3 di/ei

The instructions di and ei are alike except in one detail, di disables the IE-bit of the status register, ei
enables the IE-bit of the status register. Their machine code differs only at bit 5, for the ei instruction this
bit is set to 1 and for the di instruction this bit is set to “0”. Both instructions return the previous value of
the status register to the regular register with the index determined by the rt-field. The descriptions can
be found in listing 4.3 and 4.4.

4.4 Implementation of additionally required Instructions 33

Figure 4.3: Description of the instruction ei.[14]

Figure 4.4: Description of the instruction di.[14]

The field MFMC0 was encoded with “010110”, like in listing 4.35. The implementation of the return
value is exactly like a mfc0 instruction.

constant MIPS_FUNC_MFMC0 : t_mips_format := b"0_1011"; --

implements di and ei depending on the sc field

Listing 4.35: Encoding of “MFMC0”

The implementation of the return value is exactly like a mfc0 instruction. The signal i_src_select was set
to SRC_OUT_C0 to implement the move to part of the instruction. The signal c0_read_enable was set to
true, but the signal is not needed anymore. The logic to set the IE-field to the value of an incoming signal
was already described in chapter 4.2, to enable the writing the signal i_status_ie_en was set to true. The

4.4 Implementation of additionally required Instructions 34

value of bit 5 of the instruction is passed onto the register banks. This can be seen in listing 4.36. The
decoding of the instruction is shown in listing 4.37.

i_interrupt_enable_sc <= instr_dec(5);

Listing 4.36: Passing bit 5 of the instruction to the register bank

when MIPS_OPCODE_COP0 =>

case i_rs_dec is
when MIPS_FUNC_MFMC0 => c0_read_en <= ’1’;

i_src_out_select <= SRC_OUT_C0;

i_status_ie_en <= ’1’;

Listing 4.37: Decoding of the instruction “di” and “ei”

4.4.4 ehb

The MIPS documentation, seen in listing 4.38, states that the instruction ehb requires a MIPS32r2 (or
higher) ISA, nevertheless MIPSI is able to interpret the instruction. ehb is an assembler idiom interpreted
as SLL r0,r0, 3 which does not change any register since the value of register r0 (also called $0) is
always zero and cannot be modified. Therefore, values written to $0 cannot be forwarded. ehb stops
the excecution of instrcutions until all excecution dependencies have been resolved. There was only a
comment added to mips_instruction_set.vhd to indicate that the instruction ehb can be interpreted. This
can be seen in listing 4.38.

Figure 4.5: Description of the instruction ehb.[14]

-- constant MIPS_FUNC_EHB : t_mips_function := b"00_0000"; -- assembly

idiom interpreted as SLL r0,r0,3

Listing 4.38: Pseudoimplementation of ehb

4.4 Implementation of additionally required Instructions 35

4.4.5 ins

The instruction ins is used to merge a right-justified bit from the register defined by the rs field into
the register defined by the rt field. The exact description can be seen in figure 4.6. The more intuitive
symbolic description can be seen in figure 4.7.

Figure 4.6: Description of the instruction ins.[14]

ABCD EFGH

MNOP QRST

QRSTEFGHIJKL

IJKL

rs

rt
initial
value

rt
final
value

31

31

31

0

0

0

32-(msb-lsb+1) msb-lsb+1

msb-lsb+1

msb-lsb+1

32-(msb+1)

32-(msb+1)

lsb

lsb

msb-lsb+1 msb-lsb

lsb lsb-1msbmsb+1

lsbmsbmsb+1 lsb-1

Figure 4.7: Symbolic description of the instruction ins.[14]

4.4 Implementation of additionally required Instructions 36

The opcode SPECIAL3 encoded by “011111” was added to mips_instruction_set.vhd. This can be seen in
listing 4.39.

constant MIPS_OPCODE_SPEC3 : t_mips_opcode := b"01_1111";

Listing 4.39: Encoding of opcode SPECIAL3

The function “INS” was encoded with “00100” as seen in listing 4.40.

constant MIPS_FUNC_INS : t_mips_function := b"00_0100";

Listing 4.40: Encoding of the function INS

To operate the instruction ins, there was the new function control signal PLASMA_ALU_INS added to the
ALU control. This can be seen in the last line of listing 4.41.

239 -- ALU CONTROL

240 --

241 type t_alu_function is (
242 PLASMA_ALU_NOTHING ,

243 PLASMA_ALU_ADD ,

244 PLASMA_ALU_ADDU ,

245 PLASMA_ALU_SUB ,

246 PLASMA_ALU_SUBU ,

247 PLASMA_ALU_SLT_SIGNED ,

248 PLASMA_ALU_SLT_UNSIGNED ,

249 PLASMA_ALU_OR ,

250 PLASMA_ALU_AND ,

251 PLASMA_ALU_XOR ,

252 PLASMA_ALU_NOR ,

253 PLASMA_ALU_INS);

Listing 4.41: Modification of the result MUX(control signal)

Additionally there were the input ports alu_msb and alu_lsb added to the alu, as shown in listing 4.42.

entity plasma_alu is
generic(
FPGA_FLAG : string := "OF"

);

port(
alu_a_in : in t_plasma_word;

alu_b_in : in t_plasma_word;

alu_func : in t_alu_function;

alu_msb : in std_logic_vector;

alu_lsb : in std_logic_vector;

alu_busy : out std_logic;
alu_out : out t_plasma_word

);

end entity plasma_alu;

Listing 4.42: Modified port list of the ALU

4.4 Implementation of additionally required Instructions 37

To be able to use the values from the ports alu_msb and alu_lsb, the values were casted into the integer
values msb and lsb as seen in listing 4.43. The required function was implemented like in the description
and can be seen in figure 4.44.

msb := to_integer(unsigned(alu_msb));

lsb := to_integer(unsigned(alu_lsb));

Listing 4.43: Casting into the integer values msb and lsb

case alu_func is
when PLASMA_ALU_INS => alu_out <= alu_b_in(31 downto msb+1) &

alu_a_in((msb - lsb) downto 0) &
alu_b_in((lsb -1) downto 0);

Listing 4.44: Implementation of the (ins)-operation performed by the ALU

The decoding of the instruction ins can be seen in listing 4.45.

when MIPS_OPCODE_SPEC3 =>

case i_func_dec is
when MIPS_FUNC_INS => report "INS used";

i_alu_func <= PLASMA_ALU_INS;

imm_command.src_b <= ’0’;

reg_addr.rt <= i_rt_dec;

Listing 4.45: Decoding of the instruction “ins”

For debug purposes the reporting of the string “INS used” was implemented. To perform the ins
instruction, the ALU function is set to PLASMA_ALU_INS. Since the source b input comes from a register
and is not an immediate value, the signal imm_command.src_b is set to “0”. Since the used rt register
(signal reg_addr.rt is by default set to register $0 , the signal is set to the value contained by the
instruction rt-field (represented by the signal i_rt_dec). The pipeline ensures a correct performance of
the instruction.

4.4.6 eret

The instruction eret is used to return from an exception, interrupt or error trap. Despite the fact that it is
a jump instruction, it has no delay slot, which means the next instruction following eret is not executed.
The description can be found in figure 4.8. The opcode of eret is COP0, the function code is ERET . The
function code ERET was encoded with “011000” as shown in listing 4.46.

constant MIPS_FUNC_ERET : t_mips_function := b"01_1000";

Listing 4.46: Encoding of the function ERET

when MIPS_OPCODE_COP0 =>

case i_func_dec is
when MIPS_FUNC_ERET => report "eret";

i_pc_func <= PLASMA_PC_EPC;

i_no_delay_slot <= ’1’;

Listing 4.47: Decoding of the instruction “eret”

4.4 Implementation of additionally required Instructions 38

Figure 4.8: Description of the instruction eret.[14]

When the instruction eret is decoded the string “eret” is reported for debug purposes. The signal
i_pc_signal is set to 1, but for the latest implementation it is not needed anymore. The pc_func signal
is controlling the pc multiplexer after the EX-stage. Because the eret instruction does not execute its
suceeding instruction, it needs to control the pc multiplexer one stage earlier, meaning after the EX-stage.
Therefore was the signal i_no_delay_slot set to 1. This signal is directly connected to the pc multiplexer
and can be evaluated after the ID-stage. If the instruction is eret the pc is set to the signal epc_in which
contains the pc value when the interrupt occurred. This can be seen in listing 4.48.

with no_delay_slot select
pc_value <= epc_in when ’1’,

pc_value_with_delay_slot when others;

Listing 4.48: Returning to the epc address

4.4 Implementation of additionally required Instructions 39

4.5 Software protocol

When the program is started, the second core starts with the function main_core2(). It is trapped in an
endless loop doing nop instructions. This can be seen in listing 4.49. The first core starts with the function
main_core1() which does not differ from the original main() function of the jpeg2000 algorithm. The first
loop that can be parallelized is located in bmp2image.c.

int main_core2() {

while(1){
for(int i = 0;i<100;i++){

__asm__("nop");

__asm__("nop");

__asm__("nop");

__asm__("nop");

__asm__("nop");

__asm__("nop");

__asm__("nop");

__asm__("nop");

__asm__("nop");

__asm__("nop");

__asm__("nop");

}

}

return 0;
}

Listing 4.49: The function main_core2()

The parallelized loop was implemented in the function f_noc_bmptoimage() . This can be seen in listing
4.50.

void f_noc_bmptoimage(){
unsigned int i; // loop variable

for(i = v_noc_bmptoimage ->start; i < v_noc_bmptoimage ->end; i++){ // main loop

v_noc_bmptoimage ->RGB[i] = v_noc_bmptoimage ->IN[v_noc_bmptoimage ->index++];

}

ack_received = 1;

}

Listing 4.50: The function f_noc_bmptoimage()

When reaching the location of the parallelized loop, the first core sets the volatile int variable ack_received
to “0”. Then it sends a pointer to the function f_noc_bmtoimage() to the second core. This can be seen in
listing 4.51.

ack_received = 0;

router_send(1, &f_noc_bmptoimage); // pointer to the function

Listing 4.51: The function f_noc_bmptoimage()

4.5 Software protocol 40

The structure v_noc_bmptoimage that is required by f_noc_bmtoimage() is initialised by core0, as shown
in listing 4.52.

v_noc_bmptoimage = (t_noc_bmptoimage *) malloc(sizeof(t_noc_bmptoimage));

v_noc_bmptoimage ->start = ((3 * W + PAD) * H) >> 1;

v_noc_bmptoimage ->end = (3 * W + PAD) * H;

v_noc_bmptoimage ->index = index + (((3 * W + PAD) * H) >> 1);

v_noc_bmptoimage ->IN = IN;

v_noc_bmptoimage ->RGB = RGB;

Listing 4.52: Initialization of the structure v_noc_bmtoimage

Therefore, the first core computes its own share of the parallelized loop. When finished, it stays in a loop
idling until ack_received is set to 1. After it received an acknowledgement from core2 it continues with
the regular program flow. This can be seen in listing 4.53.

while(ack_received == 0){
__asm__("nop");

};

Listing 4.53: Core1 waiting for acknowledgement of core2

When the second core receives data, it jumps to the function ISR() . The value of the address pointer
loop_function is set to the address received by the router which is the address of the function
f_noc_bmptoimage(). The command “*(loop_function)();” executes f_noc_bmptoimage(). The vari-
able ack_received is set to “1” at the end of the loop. Since the last instruction of the compiler created
function is eret, core2 returns to it’s previous address, which means it return to the nop-loop. The C source
code of the function ISR() can be seen in listing 4.54.

void __attribute__ ((interrupt , , section(".isr"))) ISR(){

void (* loop_function)(void);
loop_function = router->data;

(*loop_function)();

return;
}

Listing 4.54: The function ISR()

The implementation for the two other functions that can be parallelized works similiar. The function
f_noc_t1_encode_cblks()(listing 4.55) is located in t1.c. The function f_noc_t1_encode_cblks()(listing
4.56) is located in tcd.c.

4.5 Software protocol 41

void f_noc_t1_encode_cblks(){
if(!opj_t1_encode_cblks(v_noc_t1_encode_cblks ->t1,

v_noc_t1_encode_cblks ->tile,

v_noc_t1_encode_cblks ->tcp,

v_noc_t1_encode_cblks ->mct_norms)){

sim_message(9, 0); //sim_message("return FALSE",0)

sim_stop();

}

ack_received = 1;

}

Listing 4.55: The function f_noc_t1_encode_cblks()

void f_noc_tcd_rateallocate(){
if(!opj_tcd_rateallocate(v_noc_tcd_rateallocate ->tcd,

v_noc_tcd_rateallocate ->dest,

v_noc_tcd_rateallocate ->p_data_written ,

v_noc_tcd_rateallocate ->len,

v_noc_tcd_rateallocate ->cstr_info)){

sim_message(9, 0); //sim_message("return FALSE",0)

sim_stop();

}

ack_received = 1;

}

Listing 4.56: The function f_noc_tcd_rateallocate()

4.6 The Interrupt Service Routine

To handle interrupts the assembler routine created by the compiler uses only the registers k0 and k1 .
Those registers are reserved for interrupt purposes. The other registers should not be used, because this
could result in crushing registers that are still needed. First the values from the Cause and EPC register
are moved to the registers k0 and k1 (see listing 4.57).

mfc0 k0,c0_cause

mfc0 k1,c0_epc

Listing 4.57: Moving the cause and the exception cause address to k0 and k1.

The EPC value is then stored to the memory (listing 4.58).

addiu sp,sp,-104

sw k1,100(sp)

Listing 4.58: Storing the exception cause address to the memory

In order to compute the recent CP0 status, the code seen in listing 4.59 does the following: The status of
CP0 is moved to the regular register bank. By using the instrucion ins the information from the cause
register is merged into the preceding CP0 status. The second ins instruction sets some bits determining
the operation mode to zero1. The recent CP0 status value is then moved back to the CP0 status register.
1 The concrete details of the operation mode are for this implementation not relevant.

4.6 The Interrupt Service Routine 42

mfc0 k1,c0_status

srl k0,k0,0xa

sw k1,96(sp)

ins k1,k0,0xa,0x6

mflo k0

ins k1,zero,0x1,0x4

sw k0,92(sp)

mfhi k0

sw k0,88(sp)

mtc0 k1,c0_status

Listing 4.59: Computation of the recent CP0 status.

In the next part the non-preserving registers are saved. The isr-routine as defined by the C source code is
executed. In this case it is just a jalr to the function received by the router. The assembler code can be
seen in listing 4.60.

sw v0,20(sp)

lui v0,0x120

sw ra,84(sp)

addiu v0,v0,8196

sw t9,80(sp)

sw t8,76(sp)

sw t7,72(sp)

sw t6,68(sp)

sw t5,64(sp)

sw t4,60(sp)

sw t3,56(sp)

sw t2,52(sp)

sw t1,48(sp)

sw t0,44(sp)

sw a3,40(sp)

sw a2,36(sp)

sw a1,32(sp)

sw a0,28(sp)

sw v1,24(sp)

sw at,16(sp)

lw v0,4(v0)

jalr v0

nop

Listing 4.60: Register saving and call of the received function.

Before the non-preserving registers are restored, interrupts are disabled by the use of the instruction di.
The instruction ehb resolves execution hazards. This is shown in listing 4.61.

4.6 The Interrupt Service Routine 43

di
ehb
lw k0,92(sp)

lw ra,84(sp)

lw t9,80(sp)

mtlo k0

lw k0,88(sp)

lw t8,76(sp)

lw t7,72(sp)

lw t6,68(sp)

lw t5,64(sp)

lw t4,60(sp)

lw t3,56(sp)

mthi k0

lw t2,52(sp)

lw t1,48(sp)

lw t0,44(sp)

lw a3,40(sp)

lw a2,36(sp)

lw a1,32(sp)

lw a0,28(sp)

lw v1,24(sp)

lw v0,20(sp)

lw at,16(sp)

Listing 4.61: Restoring of the non-preserving register.

In the last part of the routine, the original EPC and status register values are loaded from the memory
and moved to CP0. Finally, the processor returns to the regular program flow by the use of the instruction
eret (see listing 4.62).

lw k0,100(sp)

mtc0 k0,c0_epc

lw k0,96(sp)

addiu sp,sp,104

mtc0 k0,c0_status

eret

Listing 4.62: Returning to the regular program flow.

4.6 The Interrupt Service Routine 44

5 Conclusion

5.1 Evaluation

The main goal of this work, was to implement a solution that does not require the second core to constantly
read the memory. This was achived. The first core on the other hand, is still permanently reading the
memory while waiting for acknowledgement of the second core. The implemented protocol does not
provide a solution to this matter, because the conditions are different for the first core. The second core
is trapped in a nop-loop as default state and is interrupted to call a given function. The first core on
the other hand is running the jpeg2000 algorithm and idling in a nop-loop when waiting for the second
core to finish. The approach to interrupt it when the second core has finished its loop had no success.
The implemented solution works for the given source code, showing that the implemented concept does
solve the problem in general. But the implemented solution is not optimal. With the given platform
it is only possible to check whether the jpeg2000 picture is computed correctly. There is no guarantee
that all implemented instructions work under any circumstances. The correct return to the interrupted
address does not work properly when the instruction before the interrupted instruction was a jump or
branch. The implementation of mfc0 and mtc0 does not provide a proper forward and stall logic for this
instructions. Nevertheless, the implementation solves the required tasks. Additionally, it contains more
functions than exploited by the modified hardware so far. The provided solution can easily be adopted to
other parallelized software by adjusting the C source code only.

5.2 Outlook

5.2.1 Scalability

The implemented solution does scale well for more than two cores, just the partitioning of the parallelized
loops has to be adjusted and an additional variable has to be added for every additional core to store the
status of the acknowledgement. The solution can easily be adjusted for a NoC with more than two cores.
To exploit parallelism further more the platform could be expanded to three or more cores.

5.2.2 Delay of Interrupt

To solve the problem that the return to an interrupted instruction does not work properly if the previous
instruction was a jump can easily be solved with a simple solution. There has to be a signal implemented
in the control unit which stores the information if the previous instruction was a jump or branch. The
interrupt signal which is wired from the router directly to the datapath and to the control unit, has to be
wired to the control unit only. The control unit evaluates whether an interrupt may take place or may be
delayed and sets the signals interrupt_allowed and interrupt_delayed accordingly. Those signals are
required to be forwarded to the datapath. The processes that were initially triggered by the interrupt
signal is changed to trigger on interrupt_allowed and interrupt_delayed.

45

5.2.3 Correct Implementation of mfc0 and mtc0

The forward logic of mfc0 and mtc0 was not correctly implemented. A value that is moved from the CP0
register bank to the regular register bankhas to go through the ALU, which performs an operation that
does not change the original value. This way, the result of the ALU is recognized by the forward logic and
is forwarded properly. The value that is moved from the regular register bank to the CP0 register bank
has to be wired directly to the multiplexer of the WB-stage and to be chosen by the control signal. That
way it cannot occur that a false value, for example the result of the ALU, is forwarded.

5.2.4 Acknowledgements

The given platform does not support package acknowledgement. A possible way to improve the platform
is to implement a package acknowledgement. If the delay of interrupt is implemented it is also useful to
implement an acknowledgement for received interrupts.

5.2.4.1 Advanced Features for Interrupts

The implemented instructions di and ei disable or enable interrupts in the IE-field of the status register.
The implemented solution does not check the IE-field, because in the implemented protocol, an interrupt
never occurs when the IE-field is set to disable interrupts. For more functionality, the evaluation of the
interrupt enable bit can be implemented. The routine created by the compiler also loads the cause of
an interrupt. The implemented solution does not write any cause for an interrupt because there is only
one cause that leading to an interrupt. For enhanced functionality the evaluation of the cause can be
implemented. The address where to jump when an interrupt occurs can be implemented by using different
addresses for different causes.

5.2.5 Full Portation to MIPS32r2

The solution implements partial functionalities of a MIPS32r2 architecture. To further improve the
functionality of the platform, the platform could be changed to implement all requirements of a MIPS32r2
ISA.

5.2 Outlook 46

6 Bibliography

[1] http://msdn.microsoft.com/en-us/library/vstudio/hh265136.aspx. [Online; accessed 16-
October-2014].

[2] http://www.openjpeg.org/. [Online; accessed 20-October-2014].

[3] COMPILER, ASSEMBLER, LINKER AND LOADER: A BRIEF STORY. www.tenouk.com/ModuleW.html.
[Online; accessed 16-October-2014].

[4] “6.30 Declaring Attributes of Functions”. https://gcc.gnu.org/onlinedocs/gcc/

Function-Attributes.html#Function-Attributes. [Online; accessed 20-October-2014].

[5] "Stop-and-Wait" protocol. http://www.isi.edu/nsnam/DIRECTED_RESEARCH/DR_HYUNAH/

D-Research/stop-n-wait.html. [Online; accessed 17-October-2014].

[6] http://en.wikipedia.org/wiki/File:AmdahlsLaw.svg, 2008. [Online; accessed 16-October-
2014].

[7] Andrew S. Tanenbaum. Computernetzwerke. Person Studium, 4. edition, 2003.

[8] David A. Patterson and John L. Hennessy. Computer Oranziation and Design - The Hardware/Software
Interface. Morgan Kaufmann Puplishers, United States of America, 3. edition, 2004.

[9] Ian Foster. Designing and Building Parallel Programs: Concepts and Tools for Parallel Software
Engineering. Addison-Wesley, 1995.

[10] Javier Diaz, Camelia Muñoz-Caro, and Alfonso Niño. A survey of parallel programming models
and tools in the multi and many-core era. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED
SYSTEMS, 23(3):1369–1386, august 2012.

[11] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann Puplishers, United States of America, 5. edition, 2011.

[12] Roland Kluge. C/C++ Praktikum - Einführung. Presentation, 2014. Technische Universität
Darmstadt.

[13] Manuel Bied and Felix Pels. Partial parallelization of the openjpeg implementation of the jpeg2000-
algorithm for a network-on-a-chip with two cores. Technical report, Technische Universität Darm-
stadt, Fachgebiet Integrierte Elektronische Systeme.

[14] MIPS Technologies, Inc. MIPS32TM Architecture For Programmers Volume II: The MIPS32TM Instruc-
tion Set, 2001.

[15] MIPS Technologies, Inc. MIPS32TM Architecture For Programmers Volume III: The MIPS32TM
Privileged Resource Architecture, 2001.

47

http://msdn.microsoft.com/en-us/library/vstudio/hh265136.aspx
http://www.openjpeg.org/
www.tenouk.com/ModuleW.html
https://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html#Function-Attributes
https://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html#Function-Attributes
http://www.isi.edu/nsnam/DIRECTED_RESEARCH/DR_HYUNAH/D-Research/stop-n-wait.html
http://www.isi.edu/nsnam/DIRECTED_RESEARCH/DR_HYUNAH/D-Research/stop-n-wait.html
http://en.wikipedia.org/wiki/File:AmdahlsLaw.svg

[16] Sarah Harris and David Harris. Digital Design and Computer Architecture. From Gates to Processors.
Morgan Kaufmann Puplishers, 2007.

[17] Stephen G. Kochan. Programming in C. Sams Publishing, 3. edition, 2004.

[18] Thomas Rauber and Gudula Rünger. Parallele Programmierung. Springer, Berlin Heidelberg New
York, 2. edition, 2007.

[19] Urs Gleim and Tobias Schüle. Multicore-Software. dpunkt.verlag, Paderborn, 1. edition, 2012.

48

	List of Figures
	List of Listings
	Used Abbreviations
	Introduction
	Motivation

	Fundamentals
	Exceptions and Interrupts
	Exception Handler

	Build Process of a C Program
	Fundamentals of Parallelism in Hardware and Software
	Processor Architecture
	Pipelines
	Hardware Multithreading
	Coprocessors and Superscalar CPUs
	Multicore Processors & Multiprocessors

	Memory Architectures
	Processes and Threads

	Approaches to Parallelization
	Parallel Compilers
	Parallel Libraries
	PCAM Method

	Synchronization
	Communication Protocols
	Polling
	Stop-and-wait Protocol

	Mechanisms for Synchronization of competing Accesses

	Performance Metrics

	Description of the Environment
	Plasma CPU Core
	Control Unit
	Datapath
	Delay Slot

	Specifications of the Network-on-Chip
	tb_platform.vhd

	Communication
	Router

	Implementation
	Changes in the Build Process
	GCC Compiler Attributes
	Makefile
	Linker Script
	Script lst2files.pl

	Implementation of Coprocessor0
	Implementation of an Interrupt Functionality
	Implementation of additionally required Instructions
	mfc0
	mtc0
	di/ei
	ehb
	ins
	eret

	Software protocol
	The Interrupt Service Routine

	Conclusion
	Evaluation
	Outlook
	Scalability
	Delay of Interrupt
	Correct Implementation of mfc0 and mtc0
	Acknowledgements
	Advanced Features for Interrupts

	Full Portation to MIPS32r2

	Bibliography

